Embeddedadvisor
US
APAC
EUROPE
  • Home
  • Insights
  • Whitepaper
  • Conferences
  • Newsletter
  • Subscribe
  • News
  • About us
Go to...
  • Home
  • Insights
  • Whitepaper
  • Conferences
  • Newsletter
  • Subscribe
  • News
  • About us
  • Categories

  • IP Design
  • Telecom
  • Wearables and Sensor
  • Consumer Electronics
  • IoT
  • More
      • Industrial Computing
Go to...
  • Categories

  • IP Design
  • Telecom
  • Wearables/Sensor
  • Consumer Electronics
  • IoT
  • Industrial Computing
×
#

Embedded Advisor Weekly Brief

Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Embedded Advisor

Subscribe

loading

THANK YOU FOR SUBSCRIBING

  • Home
  • Insights
  • IP Design
Editor's Pick(1 - 4 of 8)
left
Safeguarding Most Important Wealth - Intellectual Property

Richard Caron, CIO & VP of Business Process Management, Isola Group

Some Simple Steps You can Take to Keep Devices Secure

Aaron Gette, CIO, The Bay Club Company

Only IPv6 has the backbone to carry the IoT

Richard Jimmerson, CIO, ARIN

Leveraging Operational Excellence through IoT in Aerospace

David Jarvis, VP/CIO, Honeywell Aerospace

Artificial Intelligence in Our Innovations

Joseph S. Codispoti, Chief Intellectual Property Counsel, BEDGEAR

5 Misconceptions Executives and Engineers Have about Patents

Steven G. Saunders, Co-Chair Intellectual Property Department/ Patent Attorney, Nutter

Blockchain: When Reality Meets Utopia

Nathaniel Karp, Chief Economist, BBVA Compass

How Autonomous Vehicles Perceive and Navigate their Surroundings

Anand Gopalan, CTO, Velodyne LiDAR, Inc.

right

Extending the Internet of Things to Brownfield Devices

By Suhas D. Joshi, Director, Enterprise Architecture, Honeywell International

Tweet

Suhas D. Joshi, Director, Enterprise Architecture, Honeywell International

The Internet of Things (IoT) is all about unlocking business value that is locked up in data generated by “things”. Consider a smart industrial pump that is used in an oil refinery. The pump generates useful data regarding speed, volume of fluid passing through as well as vibration and noise level of the pump itself. If this data is collected from the pump and sent to an application for analysis, it will be possible to gain insight into data patterns that show the behavior of the pump. Certain anomalies, for example, a high degree of vibration and noise with normal fluid speed and volume, may suggest that the pump needs to be serviced. If not serviced quickly, it will lead to a disruptive failure. A single averted disruption can save millions of dollars. Because of IoT related technologies such as networking, cloud technology, data storage and analytics, it is now possible to collect and analyze device data at a large scale and generate significant business value.

IoT is a relatively recent development. But there are millions of devices, sensors and controllers that were developed long before IoT came along. These devices generate data for “things” such as pumps, rooms or air handlers. Such devices have been already deployed in the field and use proprietary or standard protocols to communicate with other local devices or local applications. The local application resides in physical proximity of the devices, receives data generated by the devices and performs command and control. See the figure below as an illustration of how legacy devices are connected.

"Extending the IoT to legacy devices may appear as a daunting task but the right architectural choices will definitely pave the way for success"

The automation and control protocols implemented in legacy (or brownfield) devices are designed for a local “site” level communications and control, as opposed to communicating with a remote application that is accessed through Internet. For example, a water leak detector may communicate through a ModBus protocol, a temperature sensor communicates through BACnet protocol and an air handler unit may use LonWorks. Operations, Administration and Maintenance (OA&M) is performed locally and not remotely through the public Internet. Finally, security design assumes a friendly, local, “site” based communication as opposed to communications over the public Internet. Thus, connecting brownfield devices to the IoT imposes formidable challenges.

Now let us review the building blocks of the IoT architecture. A key IoT component is an on-premise or off-premise cloud infrastructure. The benefits of such an infrastructure include scalability, elasticity and availability. Services to authenticate devices, ingest and store data generated by devices and tools for data analytics and cloud resident applications reside in the cloud. Cloud resident, customized applications process data generated by devices. The scalable infrastructure lends itself to access data from devices in the entire enterprise and not just a specific site. Also, device OA&M application(s) are hosted in the cloud. Data transfer between the cloud resident applications and devices goes via the Internet. Internet Protocol (IP) is commonly used for connectivity. A secure data link between devices and cloud resident applications is a key requirement for the IoT. Security considerations include restricting access based on user role, encryption of data at rest and in transit. Finally, there is a cloud resident human machine interface component which enables remote administration and managing of devices.

There are several challenges in integrating legacy devices with an IoT. To name a few, the automation and control protocols mentioned earlier such as BACnet cannot be extended to reach a software application in the cloud. Secondly, many legacy protocols use a synchronous approach for communications and in talking to cloud applications, an asynchronous approach is preferred. Finally, the security techniques implemented in legacy devices may not be suitable for protecting data as it traverses the public Internet. To overcome these challenges, a few solutions are proposed as follows.
 

One possible solution is the introduction of an “IoT Device Computing Platform (IoT DCP)”. The IoT DCP will be a scalable software platform and run on an operating system such as RTOS, Linux or Windows. It will be co-located with legacy devices. IoT DCP should support protocol drivers such as BACnet, ModBus or LonWorks which allows it to interoperate with legacy devices. To a BACnet device, the IoT DCP appears as another BACnet node. Additionally, the IoT DCP implements Transport Layer Security (TLS) protocol to establish a secure data link with the cloud based data ingestion service. Once the link is established, IoT DCP uses AMQP, MQTT protocols or the OPC/UA standard to send data to cloud resident services. See the figure below.

Another possible solution besides IoT DCP is to upgrade the firmware in each brownfield device so that each device is capable of maintaining a secure link with the cloud based data ingestion service. Then the device has to support a protocol such as AMQP, MQTT or OPC/UA to send data to the cloud based data ingestion service. This option could turn out to be quite expensive depending upon the number of devices to be upgraded. A third possible solution is a hybrid approach in which firmware is updated for some of the devices while other devices connect through the IoT DCP.

The IoT DCP option is less disruptive and could be less expensive compared to upgrading firmware in each legacy device. Regardless of whichever approach is chosen, there is cost involved in migrating the site based application(s) to the cloud. Extending the IoT to legacy devices may appear as a daunting task but the right architectural choices will definitely pave the way for success.

tag

Storage

Sensor

Read Also

Artificial Intelligence in Our Innovations

Artificial Intelligence in Our Innovations

Joseph S. Codispoti, Chief Intellectual Property Counsel, BEDGEAR
5 Misconceptions Executives and Engineers Have about Patents

5 Misconceptions Executives and Engineers Have about Patents

Steven G. Saunders, Co-Chair Intellectual Property Department/ Patent Attorney, Nutter
Blockchain: When Reality Meets Utopia

Blockchain: When Reality Meets Utopia

Nathaniel Karp, Chief Economist, BBVA Compass
How Autonomous Vehicles Perceive and Navigate their Surroundings

How Autonomous Vehicles Perceive and Navigate their Surroundings

Anand Gopalan, CTO, Velodyne LiDAR, Inc.

Weekly Brief

loading
Top 10 IP Design Service Companies - 2020
Top 10 IP Design and Solution Companies - 2020

IP Design Special

Featured Vendors

  • The Western Design Center: Guiding The Past, Present And Future Of Microprocessor Technology
    The Western Design Center: Guiding The Past, Present And Future Of Microprocessor Technology
  • LN2: Novel Phy Decoding Engines for Improved IOT Connectivity
    LN2: Novel Phy Decoding Engines for Improved IOT Connectivity
  • Fractal Technologies: One-Stop-Shop for IP Design Validation
    Fractal Technologies: One-Stop-Shop for IP Design Validation
  • Brass Roots Technologies: Specialist IP Core-Powered Solutions
    Brass Roots Technologies: Specialist IP Core-Powered Solutions

I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

Copyright © 2021 Embedded Advisor. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy Policy.
follow on linkedin follow on twitter
This content is copyright protected

However, if you would like to share the information in this article, you may use the link below:

ip-design.embeddedadvisor.com/cxoinsights/extending-the-internet-of-things-to-brownfield-devices-nid-117.html